《约分》教学反思
作为一名人民老师,我们的任务之一就是课堂教学,对学到的教学技巧,我们可以记录在教学反思中,写教学反思需要注意哪些格式呢?下面是小编为大家整理的《约分》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《约分》教学反思1我先出示几组数:18和15、6和9、12和18、14和42 、42和50,让学生找出每组数的最大公约数。一边学生说,一边我把最大公约数记录在每组数的上方。完成后,我让学生把每组的两个数分别除以它们的最大公约数,接着让学生观察所得的两个数有什么关系。当学生发现它们最大公因数只有1时,我接着问,你能用着两个数分别作分子、分母,然后得到一个分数吗?这些分数有什么共同的特征呢?你能给这样的分数取个名字吗?学生取了“最简分数”、“简单分数”等名称后我给出了正规的名称“最简分数”(让学生给分数取名字并不是为了追求课堂的虚假“繁荣”,而是通过这一过程加深学生对最简分数的本质属性的认识)。接着教师引导学生观察上面8个最简分数,他们自然地认识到最简分数既可以是真分数,也可以是假分数,这样更进一步地丰富了学生对最简分数外延的认识。那么,一个不是最简分数的分数能不能化成最简分数?如果能,又怎样把它化成最简分数呢?接着就转入约分环节的教学。
以上的教学设计,除了找两个数的最大公约数是预设,其它的都是随机生成成而得,然而就是这样的灵活调整,令我这堂课生机盎然,教学线条流畅自然。
《约分》教学反思2本节课我没有完全照搬课本上的例题1,而是利用例题1从18/24入手,让学生根据分数的基本性质,找出几个与它们大小相等的分数。学生通过写分数、说理由自然地复习了分数的基本性质。使学生在解决问题中自然而然地进入探究新知的状态。然后板书36/48=18/24=9/12=3/4 ,通过“比较这些相等分数的相同点和不同点”, 分数的分子和分母的数字都变小了,是因为分数的分子和分母同时除以了相同的数,即分子和分母的公因数,从而引出约分的概念。“36/48约分成3/4后还能继续再约分吗?为什么?”引导学生总结归纳出“分子和分母是互质数的分数,叫做最简分数” “你能举出几个最简分数吗?”引导学生不断地说,真正理解什么是最简分数。之后是学习例题2约分的书写格式及约分的方法。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。学生们基本上都对一次约分的方法感兴趣,但一次约分的要求更高,就是要一眼找出分子分母的最大公因数。
通过一系列递进式的探索活动,我让学生自己通过体验归纳总结,举例验证,由内到外的理解概念的意义,打破了概念教学教师一味讲解的模式,层层深入,激活了学生的思维,调动了学生学习的主动性和积极性,学生有足够的空间和时间去领略数学的魅力,从而成为学习的主人。
《约分》教学反思3约分是分数基本性质的直接应用。为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。
约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。
《约分》教学反思4今天我和孩子们学习了《约分》,学后感触颇深。
一、本课首先出示了学习目标:
1、理解约分的含义,掌握约分的方法。2、理解并能判断什么是最简分数。3、用分子和分母的最大公因数约分,正确的书写格式 。目标的出示为学生指明了本节课学习的目的,在课堂活动中能做到有的放矢,可避免课堂活动的盲目性。
也可调动学生的情趣,学习的积极。
二、本节课的重点是理解约分的含义和掌握约分的方法,分数基本性质和最大公因数的求法是基础。合理的知识的迁移规律,就能较好地帮助学生理解“约分”的含义,使知识深入浅出,有利于学生的理解和掌握。
三、自主探究,合作共赢。在学生理解最简分数分数的意义后,我又抛出了一个问题:你还能找出几个最简分数来吗?并让学生在小组内检验。让学生积极参与数学学习活动,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,发现最简分数概念的实际含义。之后,让学生把小组中检验出的非最简分数化简成最简分数。让学生在化简时,途径有很多,有些学生是一步步除以公因数的,也有的学生是一下子就除以最大公因数的,也有的学生是口算一下子得出最简分数的,都是可以的。
四、一个充满智慧的教师,不仅要教给学生知识,更要教给学生方法,让他们学会学习。所以在本节课我抛出问题后,不急着给出答案,先让学生思考,总结什么样的分数属于最简分数,然后教师再去总结,归纳。这让我不禁想起一位教育家的话:“给孩子一些权利,让他自己去选择,给孩子一些机会,让他自己去体验,给孩子一些困难,让他自己去尝试,给孩子一个问题,让他自己去解决,给孩子一片天空,让他自己去发挥。”这种理念不断指引着自己的方向,体验于数学课中。
《约分》教学反思5约分是分数基本性质的直接应用。让学生复习如何求两数的公因数或最大公因数,这都是为约分的教学打基础的。
在学生理解最简分数分数的意义后,能找出几个最简分数来吗?让学生在小组内检验。让学生积极参与数学学习活动,促使他们的思维处于积极的良好状态,在合作中共同探究学习,并学会观察,发现最简分数概念的实际含义。之后,让学生把小组中检验出的非最简分数化简成最简分数。
在自己的“变”分数过程中,感受约分的过程,从中发现约分的概念,并尝试着进行概括。这样本课的重、难点就迎刃而解了。
,学生展开来热烈的讨论甚至是激烈的争论,是很有必要的,经过这一轮激烈的辩论,学生有了更深的认识。在这样的思维碰撞中,真正成为学习活动的组织者,引导者和合作者,让学生根据自己的体验,用自己的思维方式自由地,开放地去“再创造”数学知识,实现真正的合作共享,从而在合作中学会学习,在 ……此处隐藏5793个字……的创设符合儿童好玩、好动、天真活泼的特点,同时又寓教于乐,使学生对约分的认识有了更新鲜,不呆板的认识。
觉得我的失误是在开始预设时,在教学时过早地引入一次约分的方法,这个方法没有让学生自己通过大量的分步约分的练习来体会来比较。由于有的学生对两个数的最大公因数一次很难找准,给一次约分造成困难。我觉得以后再上此课时,要注意。
《约分》教学反思13《约分》这节课主要是让学生理解约分及最简分数的意义,掌握约分的方法,能准确判断约分的结果是不是最简分数是这节课的教学难点。在设计中,我首先充分考虑到学生已有的知识基础——分数基本性质和最大公因数的求法。因此本课无需在此处多费时间,合理的知识迁移,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。其次补充2、5、3的倍数练习。为学生熟练掌握约分方法做准备。
对我们的学生来说,掌握约分的方法并不难,要熟练进行约分,关键在于能够很快看出分子、分母是否含有公因数2、5、3等。而且判断约分的结果是不是最简分数,即判断分子、分母是否只有公因数1,如果只有公因数1,那么这个分数是最简分数如果分子、分母是否含有大于1的公因数,这个分数不是最简分数。因此,在教学中适当补充一些判别2、5、3的倍数练习,为学生学习约分提供必要的扎实基础。
约分的知识实际上学生在理解上并不是太难的内容,但在实际运用中却掌握的不理想。我个人觉得这主要还是与学生综合运用知识的能力较弱有很大的关系。约分的知识涉及到求两个数的公因数、最大公因数以及分数的基本性质等相关知识。学生要对每个部分的知识掌握的很扎实后,将这些知识进行综合的运用,才能很好的掌握约分的方法。在课堂教学时,我觉得学生在我的引导下基本上是能够理解约分的含义和掌握一般的方法,主要的问题还是出在约不完上。部分学生找公因数的速度较慢,找不
全,不能正确判断出两个数的最大公因数等,都是学生约不好分的主要原因。我觉得只有通过反复的练习和纠正才能逐步提高学生约分的能力。
判断一个分数是否是最简分数,学生掌握得较好。对于逐次约分的过程,学生失误较多,从学生做的练习可以看出来。学生在根据分数的基本性质写出几个与已知分数相等的分数时都会,可是一到根据分数的基本性质进行约分时就常出现分子、分母除以不一样的数,我想是因为在找分子分母的公因数,学生还不熟练以及综合运用知识的能力较弱引起的,在今后的教学中,我会努力探索,改进教学方法,不断提高课堂的教学效率。
《约分》教学反思14设计好“课眼”,让课活起来
一堂课就如同一个生命体,如何使这个生命体活力四射,使师生双方都能全身心投入,设计好“课眼”非常重要。
约分这堂课,内容比较浅显和枯燥,如果遵照教材的脉络平铺直叙,照本宣科,学生也能掌握约分的方法和最简分数的含义,但这样一来,难免把课上的沉闷。我非常重视新授课上对学生学习兴趣的激发,因为只有把新授课上有意思,让学生乐于听,乐于想,才能上出效果,为后面的练习课铺好奠基石,也培养了学生良好的听课习惯。于是我课前一直在琢磨:怎么才能把这节课上得让学生觉得有兴趣?反复思量,觉得有了点灵感:不如把最简分数作为这堂课的“课眼”?
有了这个想法后,我调整了原先的教学设计,把最简分数提前教学,用最简分数带出约分。
我先出示几组数:3和7,5和18,8和9,4和9,让学生回答每组数的最大公因数,很多孩子通过前面的学习都能马上口答出每组数的最大公因数都是1,我问他们不用计算只观察就能回答的原因,学生自然就回答因为每组数都是互质数(公因数只有1);我接着问:你能用每组的两个数分别作分子和分母,然后得到一个分数吗?学生自由发言我板书,然后我问:这些分数有什么共同的特征?你能给这样的分数取个名字吗?学生踊跃的给出了很多答案。从“互质分数”“分子和分母很小的分数”“简单的分数”一直到最后“最简分数”就诞生了。
学生觉得很新奇有成就感,而且通过发现、命名这一过程加深了学生对最简分数的本质属性的认识。接着我再引导学生观察这几个最简分数,他们自然地认识到最简分数既可以是真分数,也可以是假分数,这样更进一步地丰富了学生对最简分数外延的认识。然后我再通过图片给出了一个故事情境:……老爷爷要吃 块饼,如果你是小智多星,你知道应该怎么分这块饼给他吗?孩子们通过图片能够很直观的回答出分一半或者说分 个饼给老爷爷就可以了。于是引导:这说明 和 这两个分数是相等的。如果我不给你图片,用哪一个分数能让我们更直观的知道怎么分饼呢?学生自然回答: , 是一个最简分数。
由此感受到了最简分数的优点,和把不是最简分数的分数化为最简分数的必要性。接着我再问你能把分子和分母比较大的分数化成最简分数吗?根据什么?小组内先互相说一说,于是就顺理成章的转入了约分环节的教学。
总体来说,这节课除了给出的几组数以及故事情境是预设,其他的都是由学生随机生成,这样的调整,让这节课活了起来,生机盎然,教学线条自然而流畅。
《约分》教学反思15求几个数的最大公因数提到第二单元教,因此课前进行了求公因数和最大公因数的复习,并且复习了是2、3、5倍数的特征,为判断最简分数及约分打好基础。新 课教学时把最简分数与约分两道例题在一课时内完成,因为两题联系密切,约分的教学是呼之欲出。如果强行分割开来不便于学生练习与巩固相关知识。
本课约分的正确书写是一大难点。如果一开始就使学生养成良好的约分习惯,再学习分数四则运算时将会明显减少一些不必要的失误。我以往的学生常为节约作业 本,将分数写在一行里。约分的位置不够时,他们就将约得的结果往分子分母的右侧写,数据靠得太紧,常因看错而出错。所以,今年再教时,我一直强调分数占两 行书写,今天的作业还特别要求在分子、分母再多留一行,以便写出约分后的结果。在自己示范板书时,特别向学生说明:为清晰地看到约分后的结果应将数据向 上、向下分别书写,不要写在同一行。同时,建议教材再版时不要在原数上约分。可先把原分数照抄一次后再约分,这样更方便检查,书写的格式也更规范。
教材第5题很好体现了约分的价值。当我请学生想办法比较两个分数的大小时,有的学生提议画分数示意图,看哪个分数的面积大。这种策略虽然形象直观,但毕竟 太麻烦;有的学生提议根据分数与除法的关系,用分子除以分母,把它们化成小数后再比较,但计算起来也很费时;有了约分的知识,问题迎刃而解,学生们都说 好。
但作业也暴露出学生的一些知识缺陷——同分子分数不会比较大小。原来三年级上册学习分数的初步认识时,教材都是通过直观图来帮助学生进行同分子或同分母分 数大小的比较,学生并未形成这方面的技能。建议:下次再教时,可将93页分数大小的比较提前到本课之前(如:学习完分数的基本性质之后)教学。浙江版义教 教材是分数的意义学习后,真、假分数之前教学的。
教学完约分后必须强调:如果今后遇到填空、解决问题的结果不是最简分数时必须先约分。但从作业反馈来看,学生主动约分的意识很淡薄。87页第7、8题超过半数的学生没有自主约分。
文档为doc格式